Homework 1 (Due 01/29/2014)

Math 622
January 24, 2014

Update: Fixed typos in problem 1 and 6 (i). Problem 2, 3 changed.

1. Let $0<a<b$. Let G be a càdlàg function of bounded variation.
(i) Use definition 6.2 and 6.3 in Lecture 1 note to show that $\int \mathbf{1}_{(a, b]} d G(s)=$ $G(b)-G(a)$.
(ii) Show that $\lim _{n \rightarrow \infty} \mathbf{1}_{\left(a, b+\frac{1}{n}\right]}(t)=\mathbf{1}_{(a, b]}(t)$ and $\lim _{n \rightarrow \infty} \mathbf{1}_{\left(a+\frac{1}{n}, b\right]}(t)=\mathbf{1}_{(a, b]}(t)$.
(iii) Show that

$$
\lim _{n \rightarrow \infty} \int \mathbf{1}_{\left(a, b+\frac{1}{n}\right]}(s) G(s)=\lim _{n \rightarrow \infty} \int \mathbf{1}_{\left(a+\frac{1}{n}, b\right]}(s) G(s)=\int \mathbf{1}_{(a, b]}(s) d G(s)
$$

(iv) Is it true that

$$
\lim _{n \rightarrow \infty} \int \mathbf{1}_{\left(a, b-\frac{1}{n}\right]}(s) G(s)=\int \mathbf{1}_{(a, b]}(s) d G(s) ?
$$

(iv) Is it true that

$$
\lim _{n \rightarrow \infty} \int \mathbf{1}_{\left(a-\frac{1}{n}, b\right]}(s) G(s)=\int \mathbf{1}_{(a, b]}(s) d G(s) ?
$$

(v) Evaluate $\int \mathbf{1}_{(a, b)}(s) d G(s), \int \mathbf{1}_{[a, b)}(s) d G(s), \int \mathbf{1}_{[a, b]}(s) d G(s)$ (Hint: Approximate these integrands with left continuous functions, and use the Dominated Convergence Theorem - See also Theorem 1 (iii) in Ocone's Lecture 1 note) .
2. Let

$$
G(t)=\left\{\begin{array}{ccc}
2 t, & 0 \leq t<1 \\
t^{2}-3 & , & 1 \leq t<2 \\
t+1 & , & 2 \leq t
\end{array}\right.
$$

Evaluate $\int_{0}^{3} s d G(s)$.
3. Let $0<t_{1}<t_{2}$ and $a_{1}, a_{2} \in \mathbb{R}$. Define

$$
G(t)=\left\{\begin{array}{ccc}
0 & , & 0 \leq t<t_{1} \\
a_{1} & , & t_{1} \leq t<t_{2} \\
a_{1}+a_{2} & , & t_{2} \leq t
\end{array}\right.
$$

(i) Let $\sigma>0$. Solve for $Z(t)$, where $Z(t)$ satisfies

$$
Z(t)=1+\int_{0}^{t} \sigma Z(s-) d G(s) .
$$

(ii) Now let $\sigma(s)$ be a function of s. Solve for $Z(t)$, where $Z(t)$ satisfies

$$
Z(t)=1+\int_{0}^{t} Z(s) d s+\int_{0}^{t} \sigma(s) Z(s-) d G(s) .
$$

4. (i) Let $X(t)$ be a Levy process and $\mathcal{F}(t)$ be a filtration for $X(t)$ (See the definition in Ocone Lecture 1's note section V.A). Let $\mu t=\mathbb{E}(X(t))$ and $\sigma^{2} t=$ $\operatorname{Var}(X(t))$. Show that $(X(t)-\mu t)^{2}-\sigma^{2} t$ is a martingale w.r.t. $\mathcal{F}(t)$.
(ii) Let $N(t)$ be a Poisson process and $\mathcal{F}(t)$ be a filtration for $N(t)$. Show $\exp \left(i u N(t)-\lambda t\left(e^{i u}-1\right)\right)$ is a martingale w.r.t. $\mathcal{F}(t)$.
(iii) Show that the Geometric Poisson process discussed in Example 9.1 of Lecture note 1 is a martingale (w.r.t its own filtration), without using Shreve's Theorem 11.4.5.
5. Let $X(t)$ be a Levy process and $\mathcal{F}(t)$ a filtration for $X(t)$. Use Lemma 2.3.4 and Definition 2.3.6 in Shreve to show that $X(t)$ is a Markov process.
6. (i) Let J be a counting process, that is $J(0)=0, J$ has finitely many jumps on any finite intervals and $\Delta J(t)=1$ at any jump point of J. Show that

$$
\begin{aligned}
\int_{0}^{t} J(u) d J(u) & =\frac{J(t)(J(t)+1)}{2} \\
\int_{0}^{t} J(u-) d J(u) & =\frac{J(t)(J(t)-1)}{2}
\end{aligned}
$$

Let $N(t)$ be a Poisson process with rate λ and $\mathcal{F}(t)$ a filtration for $N(t)$.
(ii) Find an explicit formula for

$$
X(t):=\int_{0}^{t}(N(s)-N(s-)) d(N(s)-\lambda s)
$$

and conclude that $X(t)$ is not a martingale (w.r.t $\mathcal{F}(t)$). (Hint: Using the fact that if $f(t)=0$ at all but finitely many points t, then $f(s-)=0$ so that $\int_{0}^{t} f(s) d s==$ $\int_{0}^{t} f(s-) d s=0$, it should be almost immediate to guess what $X(t)$ is).
(iii) Show that

$$
Y(t):=\int_{0}^{t} N(s-) d(N(s)-\lambda s)
$$

is a martingale (w.r.t $\mathcal{F}(t)$).
Hint: Recall that $\int_{0}^{t} N(s-) d(N(s)-\lambda s)=\int_{0}^{t} N(s-) d N(s)-\int_{0}^{t} \lambda N(s-) d s$ and part (i) of this problem. You can also use the fact that

$$
\mathbb{E}\left(\int_{0}^{t} N(u) d u \mid \mathcal{F}(s)\right)=\int_{0}^{s} N(u) d u+\int_{s}^{t} \mathbb{E}(N(u) \mid \mathcal{F}(s)) d u
$$

(iv) Show that

$$
Z(t):=\int_{0}^{t} N(s) d(N(s)-\lambda s)
$$

is not a martingale w.r.t $\mathcal{F}(t)$.
7. Extra credit (5pts).

Let $f(t)$ be defined on $[0, \infty)$. Fix $T>0$. The total variation of f on $[0, T]$, denoted as $T V_{f}(T)$ is defined as the smallest (finite) number such that for all partitions $0=t_{0}<t_{1}<t_{2}<\ldots<t_{n}=T$

$$
\sum_{i=0}^{n-1}\left|f\left(t_{i+1}\right)-f\left(t_{i}\right)\right| \leq T V_{f}(T)
$$

If there is no such number, we define $T V_{f}(T)=\infty$.
We also say f is a function of bounded variation (on $[0, \infty)$) if $T V_{f}(T)<\infty$ for all $T>0$.
(i) Let A be an increasing function on $[0, \infty)$. Show that for all $T>0, T V_{A}(T)=$ $A(T)-A(0)$. Thus any increasing function is of bounded variation.
(ii) Let A_{1}, A_{2} be increasing functions on $[0, \infty)$. Show that $T V_{A_{1}-A_{2}}(T) \leq$ $T V_{A_{1}}(T)+T V_{A_{2}}(T)$. Thus the difference between two increasing functions is of bounded variation. This is the reason for definition 4.1 in Lecture note 1.
(iii) Let $G(t)$ be a function of bounded variation. Show that for any partition $0=t_{0}<t_{1}<t_{2}<\ldots<t_{n}=T$,

$$
\sum_{i=0}^{n-1}\left(G\left(t_{i+1}\right)-G\left(t_{i}\right)\right)^{2} \leq \max _{i}\left|G\left(t_{i+1}\right)-G\left(t_{i}\right)\right| T V_{G}(T)
$$

(iv) We say a function f is uniformly continuous on $[0, T]$ if there exists a nonnegative function $\rho, \lim _{t \rightarrow 0} \rho(t)=0=\rho(0)$ and for all $0 \leq t, s<T,|f(t)-f(s)| \leq$ $\rho(|t-s|)$. Use the fact that a continuous function on $[0, T]$ is uniformly continuous to show that if G is continuous, G is of bounded variation then its quadratic variation $[G, G](T)=0$ for any $T>0$ (See Sheve's Definition 3.4.1)
(v) Show that the sample paths of Brownian motion is not of bounded variation with probability 1 .

